

แผนการจัดการเรียนรู้และแผนการประเมินผลการเรียนรู้ฉบับย่อ

รายวิชา ค30204 พีชคณิตเชิงเส้นเบื้องต้น 1.5 หน่วยกิต ชั้นมัธยมศึกษาปีที่ 6 ภาคเรียนที่ 2

เวลาเรียน 3 คาบ/สัปดาห์ ปีการศึกษา 2562

ครูผู้สอน คณะครูกลุ่มโรงเรียนวิทยาศาสตร์จุฬาภรณราชวิทยาลัย

1. คำอธิบายรายวิชา

ศึกษาบทพิสูจน์เกี่ยวกับเมทริกซ์และระบบสมการเชิงเส้น ดีเทอร์มิแนนต์ เวกเตอร์ ปริภูมิเวกเตอร์ ค่าเจาะจงและเวกเตอร์เจาะจง และการแปลงเชิงเส้นบนปริภูมิยุคลิด n มิติ

เพื่อพัฒนาทักษะ/กระบวนการในการคิดคำนวณ การแก้ปัญหา การให้เหตุผล การสื่อความหมายทาง คณิตศาสตร์และนำประสบการณ์ด้านความรู้ ความคิด ทักษะกระบวนการที่ได้ไปใช้ในการเรียนรู้สิ่งต่าง ๆ และใช้ ในชีวิตประจำวันอย่างสร้างสรรค์ รวมทั้งเห็นคุณค่าและมีเจตคติที่ดีต่อคณิตศาสตร์ สามารถทำงานอย่างเป็นระบบ ระเบียบ มีความรอบคอบ มีความรับผิดชอบ มีวิจารณญาณ และมีความเชื่อมั่นในตนเอง โดยจัดประสบการณ์หรือ สร้างสถานการณ์ในชีวิตประจำวันที่ใกล้ตัวให้ผู้เรียนได้ศึกษาค้นคว้า โดยการปฏิบัติจริง ทดลอง สรุป รายงาน

2. ผลการเรียนรู้

- 1. นำความรู้เรื่องระบบสมการเชิงเส้นไปประยุกต์ใช้ได้
- 2. บอกได้ว่าเซตและการดำเนินการที่กำหนดให้เป็นปริภูมิเวกเตอร์
- 3. บอกได้ว่าเซตของเวกเตอร์ที่กำหนดเป็นอิสระเชิงเส้น
- 4. หาฐานหลักและมิติของปริภูมิเวกเตอร์ที่กำหนดได้
- 5. ตรวจสอบการแปลงเชิงเส้น หาเมทริกซ์มาตรฐานสำหรับการแปลงและแสดงได้ว่าการแปลงเชิงเส้น เป็นการแปลงหนึ่งต่อหนึ่งได้
- 6. หาค่าเจาะจงและเวกเตอร์เจาะจงของเมทริกซ์ที่กำหนดให้ได้
- 7. พิสูจน์สมบัติต่างๆ ของเมทริกซ์ ดีเทอร์มิแนนต์ ปริภูมิเวกเตอร์ การแปลงเชิงเส้น

3. กำหนดการสอนและจุดประสงค์การเรียนรู้

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
1	1-3	1. Linear systems and	1. Find the set of	-Discussion	1. Anton, Howard
		Matrix	solutions to	method	and Rorres, Chris,
		1.1 Fields	a consistent	-Inquiry method	Elementary Linear
		1.2 Introduction to	linear system.	-Teaching by	Algebra :
		Systems of Linear	2. Use Gaussian	asking Problem	Application
		equations	elimination to	base learning	<i>Version</i> , 9th ed.,
		1.3 Gaussian Elimination	find the general		New York : John
		1.4 Gauss-Jordan	solution of a		Wiley, c2005.
		Elimination	linear system.		2. power point
		1.5 Homogeneous linear	3. Use Gauss-		3. graphic calculator
		systems	Jordan		4. Maple
			elimination in		5. Mathematica
			order to find the		6. work sheet
			general solution		
			of a linear		
			system.		
			4. Analyze		
			homogeneous		
			linear systems		
			using the Free		
			Variable		
			Theorem for		
			Homogeneous		
			Systems.		
			5. Applied of		
			System of Linear		
			Equations.		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
2	4-6	1.6 Matrices and Matrix	1. Know the	-Discussion	1. Anton, Howard
		Operations	arithmetic	method	and Rorres, Chris,
		1.7 Inverses; Algebraic	properties of	-Co-operative	Elementary Linear
		Properties of Matrices	matrix	learning	Algebra :
		1.8 Elementary	operations.	-Teaching by	Application
		Matrices And a Method for	2. Be able to prove	asking	<i>Version</i> , 9th
		Find A ⁻¹	basic properties	-Problem base	John Wiley, c2005.
			involving	learning	2. power point
			invertible		3. graphic calculator
			matrices.		4. Maple,
			3. Apply		Mathematica
			elementary row		5. work sheet
			operations to		
			reduce a given		
			square matrix to		
			the identity		
			matrix.		
			4. Express an		
			invertible matrix		
			as a product of		
			elementary		
			matrices.		
3	7-9	1.9 Further Results on	1. Understand how	-Discussion	1. Anton, Howard
		Systems of Equations and	the transpose	method	and Rorres, Chris,
		Invertibility	operation affects	-Co-operative	Elementary Linear
		1.10 Diagonal,Triangular	diagonal and	learning	Algebra :
		and Symmetric Matrices	triangular matrices.	-Process teaching	Application
			2. Understand how		<i>Version</i> , 9th ed.,
			inversion affects		New York : John
					Wiley, c2005.

week	Period	Contents	objective	method/activity/	Materials/resource
			1.	homework	
			diagonal and		2. power point
			triangular matrices.		3. graphic calculator
					4. Maple
					5. Mathematica
					6. work sheet
4	10-12	2. Determinants	1. Find determinant	-Discussion	1. Anton, Howard
		2.1 A Combinatorial	by a combinatorial	method	and Rorres, Chris,
		approach To Determinants	approach	-Teaching by	Elementary Linear
		2.2 Determinants by	2. Use cofactor	asking	Algebra :
		Cofactor Expansion	expansion to	-Problem base	Application
			evaluate	learning	<i>Version</i> , 9th ed.,
			the determinant of	-Process teaching	New
			a square matrix.		York : John Wiley,
			3.Use the		c2005.
			determinant of a		2. power point
			2x2 invertible		3. graphic calculator
			matrix to find the		4. Maple
			inverse of that		5. Mathematica
			matrix.		6. work sheet
5	13-15	2.3 Evaluating	1. Know the effect	-Discussion	1. Anton, Howard
		Determinants by Row	of elementary row	method	and Rorres, Chris,
		Reduction	operations on the	-Teaching by	Elementary Linear
		2.3.1 A Basic Theorem	value of a	asking	Algebra :
		2.3.2 Elementary Row	determinant.		Application
		Operations	2. Know the		<i>Version</i> , 9th ed.,
		2.3.3 Elementary	determinants of		New York : John
		Matrices	the three types of		Wiley, c2005.
		2.3.4 Matrices with	elementary		2. work sheet
		Proportional Rows or	matrices 3.Know		
		Columns	how to introduce		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
		2.3.5 Evaluating	zeros into the rows		
		Determinants by Row	or columns of a		
		Reduction	matrix to facilitate		
		2.4 Properties of	the evaluation of		
		Determinants; Cramer's	its determinant		
		Rule	4.Use row		
		2.4.1 Basic Properties of	reduction to		
		Determinants	evaluate the		
		2.4.2 Determinant of a	determinant of a		
		Matrix Product	matrix.		
		2.4.3 Determinant Test	5. Use column		
		for Invertibility	operations to		
		2.4.4 Adjoint of a Matrix	evaluate the		
		2.4.5 Cramer's Rule	determinant of a		
			matrix.		
			6. Combine the use		
			of row reduction		
			and cofactor		
			expansion to		
			evaluate the		
			determinant of a		
			matrix.		
			7. Know how		
			determinants		
			behave with		
			respect to basic		
			arithmetic		
			operations, as given		
			in Theorem 2.4.1,		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			Lemma 2.4.1and		
			Theorem 2.4.3.		
			8. Use the		
			determinant to test		
			a matrix for		
			invertibility.		
			9. Know how det(A)		
			and det(A ⁻¹) are		
			related.		
			10. Compute the		
			matrix of cofactors		
			for a square matrix		
			А.		
			11. Compute adj(A)		
			for a square matrix		
			A.		
			12. Use the adjoint		
			of an invertible		
			matrix to find its		
			inverse.		
			13. Use Cramer's		
			rule to solve linear		
			systems of		
			equations.		
			14. Know the		
			equivalent		
			characterizations of		
			an invertible matrix		
			given in Theorem		
			2.4.8.		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
6-7	16-21	3. Euclidean Vector Spaces	1. Perform	-Discussion	1. Anton, Howard
		3.1 Vectors in 2-Space, 3-	geometric	method	and Rorres, Chris,
		Space, and <i>n</i> -Space	operations on	-Teaching by	Elementary Linear
		3.1.1 Geometric Vectors	vectors: addition,	asking	Algebra :
		3.1.2 Vectors in	subtraction, and		Application
		Coordinate Systems	scalar		<i>Version</i> , 9th ed.,
		3.1.3 n-Space	multiplication.		New York : John
		3.2 Norm, Dot Product,	2. Perform		Wiley, c2005.
		and Distance in R ⁿ	algebraic		2. work sheet
		3.3 Orthogonality	operations on		
		3.3.1 Orthogonal Vectors	vectors: addition,		
		3.3.2 Lines and Planes	subtraction, and		
		Determined by Points and	scalar		
		Normals	multiplication.		
		3.3.3 Orthogonal	3. Determine		
		Projections	whether two		
		3.3.4 The Theorem of	vectors are		
		Pythagoras	equivalent.		
		3.3.5 Distance Problems	4. Determine		
		3.4 The Geometry of Linear	whether two		
		Systems	vectors are		
		3.4.1 Vector and	collinear		
		Parametric Equations of	5. Sketch vectors		
		Planes in R ⁿ	whose initial and		
		3.4.2 Lines Through Two	terminal points are		
		Points in R ⁿ	given.		
		3.4.3 Dot Product Form	6. Find		
		of a Linear System	components of a		
		3.4.4 The Relationship	vector whose initial		
		Between Ax = 0 and Ax = b			

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			and terminal points		
			are given.		
			7. Prove basic		
			algebraic properties		
			of vectors		
			(Theorems 3.1.1		
			and 3.1.2).		
			8. Compute the		
			norm of a vector in		
			R ⁿ .		
			9. Determine		
			whether a given		
			vector in R ⁿ is a		
			unit vector.		
			10. Normalize a		
			nonzero vector in		
			R ⁿ .		
			11. Determine the		
			distance between		
			two vectors in R ⁿ .		
			12. Compute the		
			dot product of		
			two vectors in R ⁿ .		
			13. Compute the		
			angle between two		
			nonzero vectors in		
			R ⁿ .		
			14. Prove basic		
			properties		
			pertaining to		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			norms and dot		
			products(Theorems		
			3.2.1-3.2.3 and		
			3.2.5-3.2.7).		
			15. Determine		
			whether two		
			vectors are		
			orthogonal.		
			16. Determine		
			whether a given set		
			of vectors forms an		
			orthogonal set.		
			17. Find equations		
			for lines (or planes)		
			by using a normal		
			vector and a point		
			on the line (or		
			plane)		
			18. Find the vector		
			form of a line or		
			plane through the		
			origin.		
			19. Compute the		
			vector component		
			of \overline{u} along and		
			orthogonal to a.		
			20. Find the		
			distance between		
			a point and a line		
			in R2 or R3.		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			21. Find the		
			distance between		
			two parallel planes		
			in R3		
			22. Find the		
			distance between a		
			point and a plane.		
			23. Express the		
			equations of lines		
			in and using either		
			vector R ² or R ³		
			parametric		
			equations.		
			24. Express the		
			equations of		
			planes in R ⁿ using		
			either vector or		
			parametric		
			equations.		
			25. Express the		
			equation of a line		
			containing two		
			given points in R ²		
			or R ³ using either		
			vector or		
			parametric		
			equations.		
			26. Find equations		
			of a line and a line		
			segment.		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			27. Verify the		
			orthogonality of		
			the row vectors of		
			a linear system of		
			equations and a		
			solution vector.		
			28. Use a specific		
			solution to the		
			nonhomogeneous		
			linear system Ax=b		
			and the general		
			solution of the		
			corresponding		
			linear system Ax=0		
			to obtain the		
			general solution to		
			Ax=b		
8	22-24	4. General Vector Spaces	1. Determine	-Discussion	1. Anton, Howard
		4.1 Real Vector Spaces	whether a given set	method	and Rorres, Chris,
		4.1.1 Vector Space	with two	-Inquiry method	Elementary Linear
		Axioms	operations is a		Algebra :
		4.1.2 Examples of Vector	vector space.		Application
		Spaces	2. Show that a set		<i>Version</i> , 9th ed.,
		4.1.3 Some Properties of	with two		New York : John
		Vectors	operations is not a		Wiley, c2005.
		4.2 Subspace	vector space by		2. work sheet
		4.2.1 Example of	demonstrating that		
		subspaces	at least one of the		
		4.2.2 Building Subspaces	vector space		
			axioms fails.		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
			3. Determine		
			whether a subset		
			of a vector space is		
			a subspace.		
			4. Show that a		
			subset of a vector		
			space is a subspace.		
			5. Show that a		
			nonempty subset		
			of a vector space is		
			not a subspace by		
			demonstrating that		
			the set is either not		
			closed under		
			addition or not		
			closed under scalar		
			multiplication.		
9	25-27	4.3 Linear Combination	1. Given a set <i>S</i> of	-Discussion	1. Anton, Howard
		and Span	vectors in and a	method	and Rorres, Chris,
		4.4 Linear Independence	vector v in R ⁿ ,	-Inquiry method	Elementary Linear
		4.4.1 Linear	determine whether		Algebra :
		Independence and	v is a linear		Application
		Dependence	combination of the		<i>Version</i> , 9th ed.,
		4.4.2 An Alternative	vectors in <i>S</i> .		New York : John
		Interpretation of Linear	2. Given a set <i>S</i> of		Wiley, c2005.
		Independence	vectors in R ⁿ ,		2. work sheet
		4.4.3 Sets with One or	determine whether		
		Two Vectors	the vectors in S		
			span R ⁿ .		

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
		4.4.4 Geometric	3. Determine		
		Interpretation of Linear	whether two		
		Independence	nonempty sets of		
		4.4.5 Linear	vectors in a vector		
		Independence of Functions	space V span the		
			same subspace of		
			V.		
			4. Determine		
			whether a set of		
			vectors is linearly		
			independent or		
			linearly dependent.		
			5. Express one		
			vector in a linearly		
			dependent set as a		
			linear combination		
			of the other		
			vectors in the set.		
			6. Use the		
			Wronskian to show		
			that a set of		
			functions is linearly		
			independent.		
10	28-30		Midterm Exam	ination	
11-	31-36	4.5 Basis and Dimension	1. Show that a set	-Discussion	1. Anton, Howard
12		4.5.1 Nonrectangular	of vectors is a basis	method	and Rorres, Chris,
		Coordinate Systems	for a vector space.	-Inquiry method	Elementary Linear
		4.5.2 Coordinates	2. Find the		Algebra :
		Relative to a Basis	coordinates of a		Application

week	Period	Contents	objective	method/activity/	Materials/resource
		4.5.3 Some Fundamental	vector relative to a		Version, 9th ed.,
		Theorems	basis.		New York : John
			3. Find the		Wiley, c2005.
			coordinate vector		2. work sheet
			of a vector relative		
			to a basis.		
			4. Find a basis for		
			and the dimension		
			of the solution		
			space of a		
			homogeneous linear		
			system.		
			5. Use dimension to		
			determine whether		
			a set of vectors is a		
			basis for a finite-		
			dimensional vector		
			space.		
			6. Extend a linearly		
			independent set to		
			a basis.		
13	37-39	4.6 Row Space, Column	1. Determine	-Discussion	1. Anton, Howard
		Space and Null Space	whether a given	method	and Rorres, Chris,
		4.6.1 Row Space,	vector is in the	-Inquiry method	Elementary Linear
		Column Space, and Null	column space of a		Algebra :
		Space	matrix; if it is,		Application
		4.6.2 General and	express it as a linear		<i>Version</i> , 9th ed.,
		Particular Solutions	combination of the		New York : John
			column vectors of		Wiley, c2005.
			the matrix.		2. work sheet

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
		4.6.3 Bases for Row	2. Find a basis for		
		Spaces, Column Spaces,	the null space of a		
		and Null Spaces	matrix.		
		4.6.4 Bases Formed from	3. Find a basis for		
		Row and Column Vectors	the row space of		
		of a Matrix	a matrix.		
			4. Find a basis for		
			the column space of		
			a matrix.		
			5. Find a basis for		
			the span of a set of		
			vectors in R ⁿ .		
14	40-42	4.7 Rank and Nullity	1. Find the rank	-Discussion	1. Anton, Howard
		4.7.1 Row and Column	and nullity of a	method	and Rorres, Chris,
		Spaces Have Equal	matrix.	-Inquiry method	Elementary Linear
		Dimensions	2. Find the		Algebra :
		4.7.2 Rank and Nullity	dimension of the		Application
		4.7.3 Linear Systems of	row space of a		<i>Version,</i> 9th ed.,
		m Equations in n	matrix.		New York : John
		Unknowns			Wiley, c2005.
		4.7.4 Overdetermined			2. work sheet
		and Underdetermined			
		Systems			
15-	43-48	4.8 Linear Transformations	1. Find the domain	-Discussion	1. Anton, Howard
16		from R ⁿ to R ^m	and co-domain of a	method	and Rorres, Chris,
		4.8.1 Functions from R ⁿ	transformation, and	-Inquiry method	Elementary Linear
		to R	determine whether		Algebra :
		4.8.2 Functions from R ⁿ	the transformation		Application
		to R ^m	is linear.		<i>Version</i> , 9th ed.,

week	Period	Contents	objective	method/activity/	Materials/resource
				homework	
		4.8.3 Linear	2. Find the standard		New York : John
		Transformation from R ⁿ to	matrix for a matrix		Wiley, c2005.
		R ^m	transformation.		2. work sheet
		4.8.4 Some Notational	3. Describe the		
		Matters	effect of a matrix		
		4.8.5 Geometry of Linear	operator on the		
		Transformation	standard basis in R ⁿ		
17	49-51	4.9 Properties of Linear	1. Find the standard	-Discussion	1. Anton, Howard
		Transformations from R ⁿ to	matrix for a	method	and Rorres, Chris,
		R ^m	composition of	-Inquiry method	Elementary Linear
		4.9.1 Compositions of	matrix		Algebra :
		Linear Transformations	transformations.		Application
		4.9.2 One-to-One Linear	2. Determine		<i>Version</i> , 9th ed.,
		Transformations	whether a matrix		New York : John
		4.9.3 Inverse of a One-	operator is one-to-		Wiley, c2005.
		to-One Linear Operator	one; if it is, then find		2. work sheet
		4.9.4 Linearity Properties	the inverse operator.		
			3. Determine		
			whether a		
			transformation is a		
			linear transformation.		
18-	52-57	Eigenvalues and	1. Find eigenvalues	-Discussion	1. Anton, Howard
19		eigenvectors	and eigenvectors of	method	and Rorres, Chris,
			a given matrix.	-Inquiry method	Elementary Linear
			2. Solve a problem		Algebra:Application
			by applying the		<i>Version</i> , 9th ed.,
			notion of		New York : John
			eigenvalues and		Wiley, c2005.
			eigenvectors.		2. work sheet
20	58-60		Final Examination	I	1

4. แผนการประเมินผลการเรียนรู้และการมอบหมายงาน

การสอนรายวิชา ค30204 พีชคณิตเชิงเส้นเบื้องต้น ประจำภาคเรียนที่ 2 ปีการศึกษา 2562 ประเมินเป็นอัตราส่วน (ร้อยละ) ดังนี้

ร้อยละของคะแนนระหว่างภาค : ร้อยละของคะแนนปลายภาค = 75 : 25 แผนการประเมินผลการเรียน คือ

- 4.1 ประเมินจากงานหรือการบ้านที่มอบหมาย ร้อยละ 20
- 4.2 ประเมินจากการสอบย่อย 2 ครั้ง ร้อยละ 30
 - 4.2.1 สอบย่อยครั้งที่ 1 ร้อยละ 15
 - 4.2.2 สอบย่อยครั้งที่ 2 ร้อยละ 15
- 4.3 ประเมินจากการสอบกลางภาค ร้อยละ 25
- 4.4 ประเมินจากการสอบปลายภาค ร้อยละ 25

เนื้อหาที่สอบ ลักษณะข้อสอบ จำนวนข้อสอบของการสอบแต่ละครั้งมีรายละเอียดดังตาราง

	ประเมินจาก	ประเมินจากการ	ประเมินจากการ	
	การสอบย่อย	สอบกลางภาค	สอบปลายภาค	
หัวข้อ/เนื้อหา	แสดงวิธีทำ	แสดงวิธีทำ	แสดงวิธีทำ	คะแนน
	จำนวนข้อ	จำนวนข้อ	จำนวนข้อ	
	(ข้อละ)	(ข้อละ)	(ข้อละ)	
1. Linear systems and Matrix	1(2)	1(2)	-	4
1.1 Fields	(คำนวณ)	(คำนวณ)		
1.2 Introduction to Systems of				
Linear Equations				
1.3 Gaussian Elimination				
1.4 Gauss-Jordan Elimination				
1.5 Homogeneous linear systems				
1.6 Matrices and Matrix Operations	1(2)	1(4)	-	6
1.7 Inverses; Algebraic Properties of	(พิสูจน์)	(พิสูจน์)		
Matrices				
1.10 Diagonal,Triangular, and				
Symmetric Matrices				
1.8 Elementary Matrices And a	1(2)	1(2)	-	4
Method for Find A ⁻¹	(คำนวณ)	(คำนวณ)		
1.9 Further Results on Systems of				
Equations and Invertibility				

	ประเมินจาก	ประเมินจากการ	ประเมินจากการ	
	การสอบย่อย	สอบกลางภาค	สอบปลายภาค	
หัวข้อ/เนื้อหา	แสดงวิธีทำ	แสดงวิธีทำ	แสดงวิธีทำ	คะแนน
	จำนวนข้อ	จำนวนข้อ	จำนวนข้อ	
	(ข้อละ)	(ข้อละ)	(ข้อละ)	
2. Determinant	1(3)	1(5)	-	8
2.1 A Combinatorial approach to	(คำนวณ)	(คำนวณ)		
Determinants				
2.2 Determinants by Cofactor				
Expansion .				
2.3 Evaluating Determinants by Row	1(2)		-	2
Reduction	(คำนวณ)			
2.4 Properties of Determinants;				
Cramer's Rule				
3. Euclidean Vector Spaces	-	1(4)	-	4
3.1 Vectors in 2-Space, 3-Space, and		(คำนวณ)		
n-Space				
3.2 Norm, Dot Product, and Distance				
in R ⁿ				
3.3 Orthogonality				
3.4 The Geometry of Linear Systems				
4. General Vector Spaces		1(4)	-	4
4.1 Real Vector Spaces		(พิสูจน์)		
4.2 Subspace				
4.3 Linear Combination and Span	1(4)	1(4)	-	8
4.4 Linear Independence	(คำนวณ)	(พิสูจน์)		
รวม	จำนวน 6 ข้อ	จำนวน 7 ข้อ	-	
	15 คะแนน	25 คะแนน		

หัวข้อ/เนื้อหา	ประเมินจาก การสอบย่อย แสดงวิธีทำ จำนวนข้อ	ประเมินจากการ สอบกลางภาค แสดงวิธีทำ จำนวนข้อ	ประเมินจากการ สอบปลายภาค แสดงวิธีทำ จำนวนข้อ	คะแนน
	(ข้อละ)	(ข้อละ)	(ข้อละ)	
4.5 Basis and Dimension	1(3)	-	1(5)	8
	(พิสูจน์)		(พิสูจน์)	
4.6 Row Space, Column Space and Null	1(3)	-	1(5)	8
Space	(คำนวณ)		(คำนวณ)	
4.7 Rank and Nullity				
4.8 Linear Transformations from R ⁿ to	1(3)	-	1(5)	8
R^{m}	(คำนวณ)		(คำนวณ)	
4.9 Properties of Linear Transformations	1(3)	-	1(5)	8
from R ⁿ to R ^m	(พิสูจน์)		(พิสูจน์)	
5. Eigenvalues and eigenvectors	1(3)	-	1(5)	8
	(คำนวณ)		(คำนวณ)	
รวมทดสอบครั้งที่ 2	จำนวน 5 ข้อ	-	-	-
	15 คะแนน			
รวม	จำนวน 11 ข้อ	จำนวน 7 ข้อ	จำนวน 5 ข้อ	80
	30 คะแนน	25 คะแนน	25 คะแนน	

5. เอกสารอ้างอิง

Anton, Howard and Rorres, Chris, *Elementary Linear Algebra : Application Version*, 9th ed, New York : John Wiley, c2005.

Friedberg, S. H., Insel, A. J., and Spence, L. E., *Linear Algebra*, Pearson Education Inc, 2003. กมล เอกไทยเจริญ, *พีชคณิตเชิงเส้น : และเทคนิคการใช้ Linear algebra : graphing calculator*, กรุงเทพฯ : ไฮเอ็ดพับลิชชิ่ง, 2545.